MOB1 Mediated Phospho-recognition in the Core Mammalian Hippo Pathway *

نویسندگان

  • Amber L Couzens
  • Shawn Xiong
  • James D R Knight
  • Daniel Y Mao
  • Sebastian Guettler
  • Sarah Picaud
  • Igor Kurinov
  • Panagis Filippakopoulos
  • Frank Sicheri
  • Anne-Claude Gingras
چکیده

The Hippo tumor suppressor pathway regulates organ size and tissue homoeostasis in response to diverse signaling inputs. The core of the pathway consists of a short kinase cascade: MST1 and MST2 phosphorylate and activate LATS1 and LATS2, which in turn phosphorylate and inactivate key transcriptional coactivators, YAP1 and TAZ (gene WWTR1). The MOB1 adapter protein regulates both phosphorylation reactions firstly by concurrently binding to the upstream MST and downstream LATS kinases to enable the trans phosphorylation reaction, and secondly by allosterically activating the catalytic function of LATS1 and LATS2 to directly stimulate phosphorylation of YAP and TAZ. Studies of yeast Mob1 and human MOB1 revealed that the ability to recognize phosphopeptide sequences in their interactors, Nud1 and MST2 respectively, was critical to their roles in regulating the Mitotic Exit Network in yeast and the Hippo pathway in metazoans. However, the underlying rules of phosphopeptide recognition by human MOB1, the implications of binding specificity for Hippo pathway signaling, and the generality of phosphopeptide binding function to other human MOB family members remained elusive.Employing proteomics, peptide arrays and biochemical analyses, we systematically examine the phosphopeptide binding specificity of MOB1 and find it to be highly complementary to the substrate phosphorylation specificity of MST1 and MST2. We demonstrate that autophosphorylation of MST1 and MST2 on several threonine residues provides multiple MOB1 binding sites with varying binding affinities which in turn contribute to a redundancy of MST1-MOB1 protein interactions in cells. The crystal structures of MOB1A in complex with two favored phosphopeptide sites in MST1 allow for a full description of the MOB1A phosphopeptide-binding consensus. Lastly, we show that the phosphopeptide binding properties of MOB1A are conserved in all but one of the seven MOB family members in humans, thus providing a starting point for uncovering their elusive cellular functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for Mob1-dependent activation of the core Mst-Lats kinase cascade in Hippo signaling.

The Mst-Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1 promotes Lats activation by Mst, but the mechanism remains unknown. Here, we show that human Mob1 binds to autophosphorylated docking motifs in active Mst2. This binding enables Mob1 phosphorylation by Mst2. Phosphorylated Mob1 undergoes conform...

متن کامل

The Roles of NDR Protein Kinases in Hippo Signalling

The Hippo tumour suppressor pathway has emerged as a critical regulator of tissue growth through controlling cellular processes such as cell proliferation, death, differentiation and stemness. Traditionally, the core cassette of the Hippo pathway includes the MST1/2 protein kinases, the LATS1/2 protein kinases, and the MOB1 scaffold signal transducer, which together regulate the transcriptional...

متن کامل

Structural basis for autoinhibition and its relief of MOB1 in the Hippo pathway

MOB1 protein is a key regulator of large tumor suppressor 1/2 (LATS1/2) kinases in the Hippo pathway. MOB1 is present in an autoinhibited form and is activated by MST1/2-mediated phosphorylation, although the precise mechanisms responsible for autoinhibition and activation are unknown due to lack of an autoinhibited MOB1 structure. Here, we report on the crystal structure of full-length MOB1B i...

متن کامل

The Hippo pathway in disease and therapy: cancer and beyond

The Hippo tumour suppressor pathway co-ordinates cell proliferation, cell death and cell differentiation to regulate tissue growth control. In mammals, a conserved core Hippo signalling module receives signal inputs on different levels to ensure the proper regulation of YAP/TAZ activities as transcriptional co-activators. While the core module members MST1/2, Salvador, LATS1/2 and MOB1 have bee...

متن کامل

The Hippo/STE20 homolog SIK1 interacts with MOB1 to regulate cell proliferation and cell expansion in Arabidopsis.

Multicellular organisms co-ordinate cell proliferation and cell expansion to maintain organ growth. In animals, the Hippo tumor suppressor pathway is a master regulator of organ size. Central to this pathway is a kinase cascade composed of Hippo and Warts, and their activating partners Salvador and Mob1/Mats. In plants, the Mob1/Mats homolog MOB1A has been characterized as a regulator of cell p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017